MAKALAH REPRESENTASI MATEMATIS


A.      Pendahuluan
Kemampuan matematis adalah kemampuan untuk menghadapi permasalahan baik dalam matematika maupun kehidupan nyata. Kemampuan matematis didefinisikan oleh NCTM (1999) sebagai, "Mathematical power includes the ability to explore, conjecture, and reason logically; to solve non-routine problems; to communicate about and through mathematics; and to connect ideas within mathematics and between mathematics and other intellectual activity”. Selanjutnya berdasarkan tujuan pembelajaran matematika di Indonesia tersirat bahwa kemampuan matematis meliputi: 1. Kemampuan pemecahan masalah (problem solving), 2. Kemampuan berargumentasi (reasonning), 3. Kemampuan berkomunikasi (communication), 4. Kemampuan membuat koneksi (connection), 5. Kemampuan representasi (representation).
Kemampuan representasi sangat berhubungan dengan pemecahan masalah. Montague (dalam Syarifah Fadillah) mengatakan bahwa pada dasarnya pemecahan masalah mempunyai dua langkah, yaitu representasi masalah dan menyelesaikan masalah. Pemecahan masalah yang sukses tidak mungkin tanpa representasi masalah yang sesuai. Representasi masalah yang sesuai adalah dasar untuk memahami masalah dan membuat suatu rencana untuk memecahkan masalah. Siswa yang mempunyai kesulitan dalam merepresentasikan masalah matematika akan memiliki kesulitan dalam melakukan pemecahan masalah. Dengan demikian seiring dengan pentingnya kemampuan pemecahan masalah dalam pembelajaran matematika, maka kemampuan representasi matematik sebagai bagian yang tak terpisahkan dari pemecahan masalah juga berperan dalam pembelajaran matematika .

B.       Pengertian Representasi Matematika
Menurut NCTM (dalam Teacher Professional Development and Classroom Resaurces Across the Curriculum), representasi membantu menggambarkan, menjelaskan, atau memperluas ide matematika dengan berfokus pada fitur-fitur pentingnya. Representasi meliputi simbol, persamaan, kata-kata, gambar, table, grafik, objek manipulatif, dan tindakan serta mental, cara internal berpikir tentang ide matematika. Representasi adalah alat berpikir yang kuat, namun bagi banyak siswa, kekuatan ini tidak dapat diakses kecuali mereka menerima bimbingan terarah dalam mengembangkan repertoar mereka.
Semakin banyak terlibat belajar matematika, siswa dapat memperluas pemahaman ide matematika atau hubungan dengan berpindah dari satu jenis representasi ke representasi yang berbeda dari hubungan yang sama. Ini adalah salah satu alasan bahwa penting bagi siswa untuk menggunakan berbagai bahan manipulatif, yang selanjutnya berkaitan dengan metode untuk memecahkan masalah. Melalui proses ini, siswa dapat bergerak dari representasi informal ke representasi formal, bahkan abstrak.
Terdapat beberapa definisi yang dikemukakan para ahli berkenaan tentang representasi yaitu:
1.     Representasi adalah model atau bentuk pengganti dari suatu situasi masalah atau aspek dari suatu situasi masalah yang digunakan untuk menemukan solusi, sebagai contoh, suatu masalah dapat direpresentasikan dengan obyek, gambar, kata-kata, atau simbol matematika (Jones & Knuth, 1991).
2.     Representasi merupakan cara yang digunakan seseorang untuk mengkomunikasikan jawaban atau gagasan matematik yang bersangkutan (Cai, Lane, & Jacabcsin dalam Syarifah Fadillah).
3.    Representasi yang dimunculkan oleh siswa merupakan ungkapan-ungkapan dari gagasan-gagasan atau ide-ide matematika yang ditampilkan siswa dalam upayanya untuk mencari suatu solusi dari masalah yang sedang dihadapinya (NCTM).
4.    Terdapat empat gagasan yang digunakan dalam memahami konsep representasi. Pertama, representasi dapat dipandang sebagai abstraksi internal dari ide-ide matematika atau skemata kognitif yang dibangun oleh siswa melalui pengalaman; kedua, sebagai reproduksi mental dari keadaan mental yang sebelumnya; ketiga, sebagai sajian secara struktur melalui gambar, simbol ataupun lambang; dan yang terakhir, sebagai pengetahuan tentang sesuatu yang mewakili sesuatu yang lain (Pape & Tchoshanov dalam Luitel, 2001).
5.     Representasi didefinisikan sebagai aktivitas atau hubungan dimana satu hal mewakili hal lain sampai pada suatu level tertentu, untuk tujuan tertentu, dan yang kedua oleh subjek atau interpretasi pikiran. Representasi menggantikan atau mengenai penggantian suatu obyek, penginterpretasian pikiran tentang pengetahuan yang diperoleh dari suatu obyek, yang diperoleh dari pengalaman tentang tanda representasi (Parmentier dalam Syarifah Fadillah).
6.     Representasi merupakan proses pengembangan mental yang sudah dimiliki seseorang, yang terungkap dan divisualisasikan dalam berbagai model matematika, yakni: verbal, gambar, benda konkret, tabel, model-model manipulatif atau kombinasi dari semuanya (Steffe, Weigel, Schultz, Waters, Joijner, & Reijs dalam Syarifah Fadillah).
7.    Dalam psikologi umum, representasi berarti proses membuat model konkret dalam dunia nyata ke dalam konsep abstrak atau simbol. Dalam psikologi matematika, representasi bermakna deskripsi hubungan antara objek dengan simbol (Hwang, Chen, Dung, & Yang dalam Syarifah Fadillah).
Dari beberapa definisi tersebut dapat disimpulkan bahwa representasi adalah ungkapan-ungkapan dari ide matematika yang ditampilkan siswa sebagai model atau bentuk pengganti dari suatu situasi masalah yang digunakan untuk menemukan solusi dari masalah yang sedang dihadapinya sebagai hasil dari interpretasi pikirannya. Suatu masalah dapat direpresentasikan melalui gambar, kata-kata (verbal), tabel, benda konkrit, atau simbol matematika. Jenis-jenis representasi akan dibicarakan lebih lanjut di bagian lain dari tulisan ini.



C.      Jenis-Jenis Representasi Matematika
Hiebert dan Carpenter (dalam Syarifah Fadillah) mengemukakan bahwa pada dasarnya representasi dapat dinyatakan sebagai representasi internal dan representasi eksternal. Berpikir tentang ide matematika yang kemudian dikomunikasikan memerlukan representasi eksternal yang wujudnya antara lain: verbal, gambar dan benda konkrit. Berpikir tentang ide matematika yang memungkinkan pikiran seseorang bekerja atas dasar ide tersebut merupakan representasi internal.
Representasi internal dari seseorang sulit untuk diamati secara langsung karena merupakan aktivitas mental dari seseorang dalam pikirannya (minds-on). Tetapi representasi internal seseorang itu dapat disimpulkan atau diduga berdasarkan representasi eksternalnya dalam berbagai kondisi; misalnya dari pengungkapannya melalui kata-kata (lisan), melalui tulisan berupa simbol, gambar, grafik, tabel ataupun melalui alat peraga (hands-on). Dengan kata lain terjadi hubungan timbal balik antara representasi internal dan eksternal dari seseorang ketika berhadapan dengan sesuatu masalah. Schnotz (dalam Gagatsis, 2004) membagi representasi eksternal dalam dua kelas yang berbeda yaitu representasi descriptive dan depictive. Representasi descriptive terdiri atas simbol yang mempunyai struktur sembarang dan dihubungkan dengan isi yang dinyatakan secara sederhana dengan makna dari suatu konvensi, yakni teks, sedangkan representasi depictive termasuk tanda-tanda ikonik yang dihubungkan dengan isi yang dinyatakan melalui fitur struktural yang umum secara konkret atau pada tingkat yang lebih abstrak, yaitu, display visual.
Lebih lanjut Gagatsis dan Elia (dalam Gagatsis, Athanasios) mengatakan bahwa untuk siswa kelas 1, 2 dan 3 sekolah dasar, representasi dapat digolongkan menjadi empat tipe representasi, yaitu representasi verbal (representasi descriptive), gambar informational, gambar decorative, dan garis bilangan (representasi depictive).
Cai, Lane, dan Jacabcsin (dalam Syarifah Fadillah) menyatakan bahwa ragam representasi yang sering digunakan dalam mengkomunikasikan matematika antara lain: tabel, gambar, grafik, pernyataan matematika, teks tertulis, ataupun kombinasi semuanya. Shield & Galbraith (dalam Syarifah Fadillah) menyatakan bahwa siswa dapat mengkomunikasikan penjelasan-penjelasan mereka tentang strategi matematika atau solusi dalam bermacam cara, yaitu secara simbolis (numerik dan/atau simbol aljabar), secara verbal, dalam diagram, grafik, atau dengan tabel data.
Lesh, Post dan Behr (dalam Syarifah Fadillah ) membagi representasi yang digunakan dalam pendidikan matematika dalam lima jenis, yaitu meliputi representasi objek dunia nyata, representasi konkret, representasi simbol aritmetika, representasi bahasa lisan atau verbal dan representasi gambar atau grafik. Di antara kelima representasi tersebut, tiga yang terakhir lebih abstrak dan merupakan tingkat representasi yang lebih tinggi dalam memecahkan masalah matematika. Kemampuan representasi bahasa atau verbal adalah kemampuan menerjemahkan sifat-sifat yang diselidiki dan hubungannya dalam masalah matematika ke dalam representasi verbal atau bahasa. Kemampuan representasi gambar atau grafik adalah kemampuan menerjemahkan masalah matematik ke dalam gambar atau grafik. Sedangkan kemampuan representasi simbol aritmatika adalah kemampuan menerjemahkan masalah matematika ke dalam representasi rumus aritmatika.


A.      Representasi dalam Pembelajaran Matematika
Vergnaud (dalam Syarifah Fadillah) menyatakan representasi merupakan unsur yang penting dalam teori belajar mengajar matematika, tidak hanya karena pemakaian sistem simbol yang juga penting dalam matematik dan kaya akan kalimat dan kata, beragam dan universal, tetapi juga untuk dua alasan penting yakni: (1) matematika mempunyai peranan penting dalam mengkonseptualisasi dunia nyata; (2) matematika membuat homomorphis yang luas yang merupakan penurunan dari struktur hal-hal lain yang pokok.
Penjelasan kedua alasan di atas yakni matematika merupakan hal yang abstrak, maka untuk mempermudah dan memperjelas dalam penyelesaian masalah matematika, representasi sangat berperan, yaitu untuk mengubah ide abstrak menjadi konsep yang nyata, misalkan dengan gambar, simbol, kata-kata, grafik dan lain-lain. Selain itu matematika memberikan gambaran yang luas dalam hal analogi konsep dari berbagai topik yang ada. Dengan demikian diharapkan bahwa bilamana siswa memiliki akses ke representasi-representasi dan gagasan-gagasan yang mereka tampilkan, maka mereka memiliki sekumpulan alat yang secara signifikan siap memperluas kapasitas mereka dalam berpikir secara matematis (NCTM, 2000).
Menurut NCTM (dalam dalam Principle and Standard for Mathematics Education, program pembelajaran matematika sebaiknya menekankan pada representasi matematis untuk membantu perkembangan pemahaman matematis sehingga siswa mampu:
1.      Membuat dan menggunakan representasi untuk mengatur, mencatat, dan mengomunikasikan ide-ide.
2.      Mengembangkan suatu bentuk perwujudan dari representasi matematis yang dapat digunakan dengan tujuan tertentu, secara fleksibel dan tepat
3.      Mengomunikasikan representasi untuk memodelkan dan menginterpretasikan fenomena fisik, social, dan matematis.
Beberapa manfaat atau nilai tambah yang diperoleh guru atau siswa sebagai hasil pembelajaran yang melibatkan representasi matematik adalah sebagai berikut:
1.         Pembelajaran yang menekankan representasi akan menyediakan suatu konteks yang kaya untuk pembelajaran guru.
2.         Meningkatkan pemahaman siswa
3.         Menjadikan representasi sebagai alat konseptual
4.         Meningkatkan kemampuan siswa dalam menghubungkan representasi matematik dengan koneksi sebagai alat pemecahan masalah
5.         Menghindarkan atau meminimalisir terjadinya miskonsepsi


DAFTAR PUSTAKA

Gagatsis, Athanasios. A Review of The Research on The Role of External Representations on Understanding And Learning Mathematics And Problem Solving. Diakses pada tanggal 5 Mei 2011, pada http://www.uia.no/no/content/download/28532/317673/file/gagatsis_h04.pdf.

Jaenudin. Pengaruh Pendekatan Kontekstual terhadap Kemampuan Representasi Matematik Beragam Siswa SMP. pada tanggal 3 Mei 201, pada situs http://www.google.com.

Jones, B.F., & Knuth, R.A. 1991. What does research ay about mathematics?. Diakses pada tanggal 5 Mei 2011, pada http://www.ncrl.org/sdrs/areas/stw_esys/2math.html.

Luitel, B.C. 2001. Multiple Representations of Mathematical Learning.  Diakses pada tanggal 5 Mei 2011, pada http://www.matedu.cinvestav.mx/adalira.pdf.

Sudarman Bennu. 2010. Pemahaman Konsep. Diakses pada tanggal 3 Mei 2011, pada situs http://sudarmanbennu.blogspot.com/

Syarifah Fadillah. 2008. Menumbuhkan Kemampuan Pemecahan Masalah dan Representasi Matematika Melalui Pembelajaran Open Ended. Diakses pada tanggal 4 Mei 2011, pada http://webcache.googleusercontent.com.

Teacher Professional Development and Classroom Resaurces Across the Curriculum. 2003. Teaching Math Grades 3-5. Diakses pada tanggal 3 Mei 201, pada situs http://www.learner.org/courses/teachingmath/grades3_5/.


Tidak ada komentar:

Posting Komentar